43 research outputs found

    Videodensitometric analysis of advanced carotid plaque: correlation with MMP-9 and TIMP-1 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of MMP (TIMP) promote derangement of the extracellular matrix, which is ultimately reflected in plaque images seen on ultrasound. Videodensitometry can identify structural disturbances in plaques.</p> <p>Objectives</p> <p>To establish the correlations between values determined using videodensitometry in B-mode ultrasound images of advanced carotid plaques and the total expression of MMP-9 and TIMP-1 in these removed plaques.</p> <p>Methods</p> <p>Thirty patients underwent ultrasonic tissue characterization of carotid plaques before surgery, using mean gray level (MGL), energy, entropy and homogeneity. Each patient was assigned preoperatively to one of 2 groups: group I, symptomatic patients (n = 16; 12 males; mean age 66.7 ± 6.8 years), and group II, asymptomatic patients (n = 14; 8 males; mean age 67.6 ± 6.81 years). Tissue specimens were analyzed for MMP-9 and TIMP-1 expression. Nine carotid arteries were used as normal tissue controls.</p> <p>Results</p> <p>MMP-9 expression levels were elevated in group II and in normal tissues compared to group I (p < 0.001). TIMP-1 levels were higher in group II than in group I, and significantly higher in normal tissues than in group I (p = 0.039). The MGL was higher in group II compared to group I (p = 0.038). Energy had greater values in group II compared to group I (<it>p </it>= 0.02). There were no differences between patient groups in homogeneity and entropy. Energy positively correlated with MMP-9 and TIMP-1 expression (p = 0.012 and p = 0.031 respectively). Homogeneity positively correlated with MMP-9 and TIMP-1 expression (p = 0.034 and p = 0.047 respectively). There were no correlations between protein expression and MGL or entropy.</p> <p>Conclusions</p> <p>Videodensitometric computer analysis of ultrasound scanning images can be used to identify stable carotid plaques, which have higher total expression levels of MMP-9 and TIMP-1 than unstable plaques.</p

    The impact of carotid plaque presence and morphology on mortality outcome in cardiological patients

    Get PDF
    BACKGROUND: Carotid plaque severity and morphology can affect cardiovascular prognosis. We evaluate both the importance of echographically assessed carotid artery plaque geometry and morphology as predictors of death in hospitalised cardiological patients. METHODS: 541 hospitalised patients admitted in a cardiological division (age = 66 ± 11 years, 411 men), have been studied through ultrasound Duplex carotid scan and successively followed-up for a median of 34 months. Echo evaluation assessed plaque severity and morphology (presence of heterogeneity and profile). RESULTS: 361 patients showed carotid stenosis (67% with <50% stenosis, 18% with 50–69% stenosis, 9% with >70% stenosis, 4% with near occlusion and 2% with total occlusion). During the follow-up period, there were 83 all-cause deaths (15% of the total population). Using Cox's proportional hazard model, age (RR 1.06, 95% CI 1.03–1.09, p = 0.000), ejection fraction > 50% (RR = 0.62, 95% CI 0.4–0.96, p = 0.03), treatment with statins (RR = 0.52, 95% CI 0.29–0.95, p = 0.34) and the presence of a heterogeneous plaque (RR 1.6; 95% CI, 1.2 to 2.14, p = 0.002) were independent predictors of death. Kaplan – Meier survival estimates have shown the best outcome in patients without plaque, intermediate in patients with homogeneous plaques and the worst outcome in patients with heterogeneous plaques (90% vs 79% vs 73%, p = 0.0001). CONCLUSION: In hospitalised cardiological patients, carotid plaque presence and morphology assessed by ultrasound are independent predictors of death

    Carotid Plaque Age Is a Feature of Plaque Stability Inversely Related to Levels of Plasma Insulin

    Get PDF
    C-declination curve (a result of the atomic bomb tests in the 1950s and 1960s) to determine the average biological age of carotid plaques.C content by accelerator mass spectrometry. The average plaque age (i.e. formation time) was 9.6±3.3 years. All but two plaques had formed within 5–15 years before surgery. Plaque age was not associated with the chronological ages of the patients but was inversely related to plasma insulin levels (p = 0.0014). Most plaques were echo-lucent rather than echo-rich (2.24±0.97, range 1–5). However, plaques in the lowest tercile of plaque age (most recently formed) were characterized by further instability with a higher content of lipids and macrophages (67.8±12.4 vs. 50.4±6.2, p = 0.00005; 57.6±26.1 vs. 39.8±25.7, p<0.0005, respectively), less collagen (45.3±6.1 vs. 51.1±9.8, p<0.05), and fewer smooth muscle cells (130±31 vs. 141±21, p<0.05) than plaques in the highest tercile. Microarray analysis of plaques in the lowest tercile also showed increased activity of genes involved in immune responses and oxidative phosphorylation.C, can improve our understanding of carotid plaque stability and therefore risk for clinical complications. Our results also suggest that levels of plasma insulin might be involved in determining carotid plaque age

    Carotid Stenosis

    No full text
    corecore